Qdrant Reader
%pip install llama-index-readers-qdrantimport loggingimport sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))If you’re opening this Notebook on colab, you will probably need to install LlamaIndex 🦙.
!pip install llama-indexfrom llama_index.readers.qdrant import QdrantReaderreader = QdrantReader(host="localhost")# the query_vector is an embedding representation of your query_vector# Example query vector:# query_vector=[0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3]
query_vector = [n1, n2, n3, ...]# NOTE: Required args are collection_name, query_vector.# See the Python client: https://github.com/qdrant/qdrant_client# for more details.documents = reader.load_data( collection_name="demo", query_vector=query_vector, limit=5)Create index
Section titled “Create index”index = SummaryIndex.from_documents(documents)# set Logging to DEBUG for more detailed outputsquery_engine = index.as_query_engine()response = query_engine.query("<query_text>")display(Markdown(f"<b>{response}</b>"))