DeepInfra
With this integration, you can use the DeepInfra embeddings model to get embeddings for your text data. Here is the link to the embeddings models.
First, you need to sign up on the DeepInfra website and get the API token. You can copy model_ids from the model cards and start using them in your code.
Installation
Section titled âInstallationâ!pip install llama-index llama-index-embeddings-deepinfraInitialization
Section titled âInitializationâfrom dotenv import load_dotenv, find_dotenvfrom llama_index.embeddings.deepinfra import DeepInfraEmbeddingModel
_ = load_dotenv(find_dotenv())
model = DeepInfraEmbeddingModel( model_id="BAAI/bge-large-en-v1.5", # Use custom model ID api_token="YOUR_API_TOKEN", # Optionally provide token here normalize=True, # Optional normalization text_prefix="text: ", # Optional text prefix query_prefix="query: ", # Optional query prefix)Synchronous Requests
Section titled âSynchronous RequestsâGet Text Embedding
Section titled âGet Text Embeddingâresponse = model.get_text_embedding("hello world")print(response)Batch Requests
Section titled âBatch Requestsâtexts = ["hello world", "goodbye world"]response_batch = model.get_text_embedding_batch(texts)print(response_batch)Query Requests
Section titled âQuery Requestsâquery_response = model.get_query_embedding("hello world")print(query_response)Asynchronous Requests
Section titled âAsynchronous RequestsâGet Text Embedding
Section titled âGet Text Embeddingâasync def main(): text = "hello world" async_response = await model.aget_text_embedding(text) print(async_response)
if __name__ == "__main__": import asyncio
asyncio.run(main())For any questions or feedback, please contact us at feedback@deepinfra.com.