Skip to content
⌘K

Redis Ingestion Pipeline

This walkthrough shows how to use Redis for both the vector store, cache, and docstore in an Ingestion Pipeline.

Install and start redis, setup OpenAI API key

%pip install llama-index-storage-docstore-redis
%pip install llama-index-vector-stores-redis
%pip install llama-index-embeddings-huggingface
!docker run -d --name redis-stack -p 6379:6379 -p 8001:8001 redis/redis-stack:latest
338c889086e8649aa80dfb79ebff4fffc98d72fc6d988ac158c6662e9e0cf04b
import os
os.environ["OPENAI_API_KEY"] = "sk-..."
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Make some test data
!rm -rf test_redis_data
!mkdir -p test_redis_data
!echo "This is a test file: one!" > test_redis_data/test1.txt
!echo "This is a test file: two!" > test_redis_data/test2.txt
from llama_index.core import SimpleDirectoryReader
# load documents with deterministic IDs
documents = SimpleDirectoryReader(
"./test_redis_data", filename_as_id=True
).load_data()

With a vector store attached, the pipeline will handle upserting data into your vector store.

However, if you only want to handle duplcates, you can change the strategy to DUPLICATES_ONLY.

from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core.ingestion import (
DocstoreStrategy,
IngestionPipeline,
IngestionCache,
)
from llama_index.storage.kvstore.redis import RedisKVStore as RedisCache
from llama_index.storage.docstore.redis import RedisDocumentStore
from llama_index.core.node_parser import SentenceSplitter
from llama_index.vector_stores.redis import RedisVectorStore
from redisvl.schema import IndexSchema
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
custom_schema = IndexSchema.from_dict(
{
"index": {"name": "redis_vector_store", "prefix": "doc"},
# customize fields that are indexed
"fields": [
# required fields for llamaindex
{"type": "tag", "name": "id"},
{"type": "tag", "name": "doc_id"},
{"type": "text", "name": "text"},
# custom vector field for bge-small-en-v1.5 embeddings
{
"type": "vector",
"name": "vector",
"attrs": {
"dims": 384,
"algorithm": "hnsw",
"distance_metric": "cosine",
},
},
],
}
)
pipeline = IngestionPipeline(
transformations=[
SentenceSplitter(),
embed_model,
],
docstore=RedisDocumentStore.from_host_and_port(
"localhost", 6379, namespace="document_store"
),
vector_store=RedisVectorStore(
schema=custom_schema,
redis_url="redis://localhost:6379",
),
cache=IngestionCache(
cache=RedisCache.from_host_and_port("localhost", 6379),
collection="redis_cache",
),
docstore_strategy=DocstoreStrategy.UPSERTS,
)
nodes = pipeline.run(documents=documents)
print(f"Ingested {len(nodes)} Nodes")
Ingested 2 Nodes

We can create a vector index using our vector store, and quickly ask which documents are seen.

from llama_index.core import VectorStoreIndex
index = VectorStoreIndex.from_vector_store(
pipeline.vector_store, embed_model=embed_model
)
print(
index.as_query_engine(similarity_top_k=10).query(
"What documents do you see?"
)
)
I see two documents.

Here, we can update an existing file, as well as add a new one!

!echo "This is a test file: three!" > test_redis_data/test3.txt
!echo "This is a NEW test file: one!" > test_redis_data/test1.txt
documents = SimpleDirectoryReader(
"./test_redis_data", filename_as_id=True
).load_data()
nodes = pipeline.run(documents=documents)
print(f"Ingested {len(nodes)} Nodes")
13:32:07 redisvl.index.index INFO Index already exists, not overwriting.
Ingested 2 Nodes
index = VectorStoreIndex.from_vector_store(
pipeline.vector_store, embed_model=embed_model
)
response = index.as_query_engine(similarity_top_k=10).query(
"What documents do you see?"
)
print(response)
for node in response.source_nodes:
print(node.get_text())
You see three documents: test3.txt, test1.txt, and test2.txt.
This is a test file: three!
This is a NEW test file: one!
This is a test file: two!

As we can see, the data was deduplicated and upserted correctly! Only three nodes are in the index, even though we ran the full pipeline twice.